- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Anderson, David (1)
-
Armstrong, David J (1)
-
Bayliss, Daniel (1)
-
Bender, Chad (1)
-
Carmichael, Theron W (1)
-
Casewell, Sarah (1)
-
Cañas, Caleb I (1)
-
Cegla, Heather M (1)
-
Doyle, Lauren (1)
-
Kanodia, Shubham (1)
-
Lafarga, Marina (1)
-
Libby-Roberts, Jessica E (1)
-
Lin, Andrea_S J (1)
-
Mahadevan, Suvrath (1)
-
Monson, Andy (1)
-
Robertson, Paul (1)
-
Stefánsson, Guðmundur K (1)
-
Veras, Dimitri (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The First Spin-Orbit Obliquity of an M dwarf/brown dwarf system: an eccentric and aligned TOI-2119 bABSTRACT We report the first instance of an M dwarf/brown dwarf obliquity measurement for the TOI-2119 system using the Rossiter–McLaughlin effect. TOI-2119 b is a transiting brown dwarf orbiting a young, active early M dwarf ($$T_{\rm {eff}}$$ = 3553 K). It has a mass of 64.4 M$$_{\rm {J}}$$ and radius of 1.08 R$$_{\rm {J}}$$, with an eccentric orbit (e = 0.3) at a period of 7.2 d. For this analysis, we utilize NEID spectroscopic transit observations and ground-based simultaneous transit photometry from the Astrophysical Research Consortium and the Las Campanas Remote Observatory. We fit all available data of TOI-2119 b to refine the brown dwarf parameters and update the ephemeris. The classical Rossiter–McLaughlin technique yields a projected star–planet obliquity of $$\lambda =-0.8\pm 1.1^\circ$$ and a three-dimensional obliquity of $$\psi =15.7\pm 5.5^\circ$$. Additionally, we spatially resolve the stellar surface of TOI-2119 utilizing the Reloaded Rossiter–McLaughlin technique to determine the projected star–planet obliquity as $$\lambda =1.26 \pm 1.3^{\circ }$$. Both of these results agree within $$2\sigma$$ and confirm the system is aligned, where TOI-2119 b joins an emerging group of aligned brown dwarf obliquities. We also probe stellar surface activity on the surface of TOI-2119 in the form of centre-to-limb variations as well as the potential for differential rotation. Overall, we find tentative evidence for centre-to-limb variations on the star but do not detect evidence of differential rotation.more » « less
An official website of the United States government
